
gold

Stable isotope	Atomic mass*	Mole fraction
¹⁹⁷ Au	196.966 568 78	1.0000

^{*} Atomic mass given in unified atomic mass units, u.

Half-life of redioactive isotope

Important applications of stable and/or radioactive isotopes

Isotopes in medicine

1) ¹⁹⁸Au has several medical uses. It can be used as both a diagnostic tool and a treatment option for cancer.

- 2) As a diagnostic tool, colloidal ¹⁹⁸Au is injected into the organ. Normal cells will take up the gold colloid but tumor cells will not. Therefore, an abscess will show up as a "cold area" on a scan.
- 3) As a treatment, gold is intended to provide localized irradiation and can be implanted or injected into the area.
 - a. When implanted, the gold "seed" offers an advantage over other materials in that it can be left in place due to its short half life.
 - b. As a colloidal injection, ¹⁹⁸ Au has been found to produce improvement in a wide variety of cancers.
- 4) Recent studies in the use of ¹⁹⁸Au nanoparticles and nanodevices have shown their effectiveness in reducing tumor size in mice while minimizing radiation spread to other areas.
- 5) ¹⁹⁸Au has been studied and found to have success as in anti-inflammatory for improving the conditions of those with arthritis.

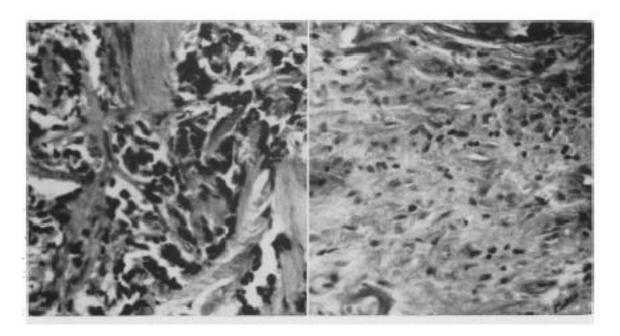


Figure 1: Example of effects of ¹⁹⁸Au in treating cancer. Left is the carcinoma prior to treatment. Right is the area after treatment, no distinct tumor cells remain.

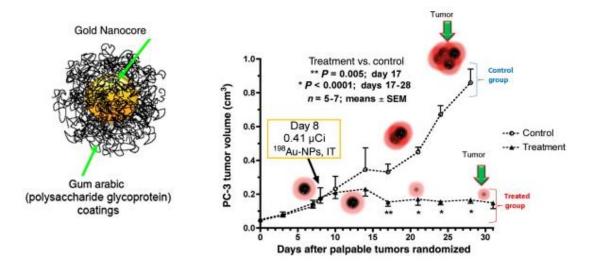


Figure 2: New research studies the effect of ¹⁹⁸Au nanoparticles with a gum Arabic coating (GA¹⁹⁸AuNP) on prostate tumors in mice. Left: A graphic of the gold nanoparticle. Right: A graph
showing tumor size over time in the control group and the treatment group.

Isotopes in tracer studies

- 1) Gold in different isotopic forms can be used on a tracer to study different things.
 - a. For example, one study used ¹⁹⁵Au to study particle movement within the lungs of rats, showing that most particles stayed in the lungs.
 - b. Another study used ¹⁹⁸Au to model gold cycling in plants. This study demonstrated that gold particles are retained by humates and would therefore be likely to accumulate in mull humus or forest litter.

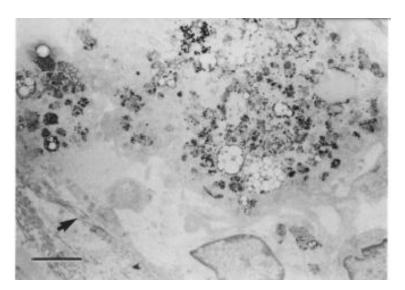


Figure 3: Concentration of gold particles in rat lungs.